83 research outputs found

    Automatic Drift Compensation Using Phase Correlation Method for Nanomanipulation

    Get PDF
    Nanomanipulation and nanofabrication with an atomic force microscope (AFM) or other scanning probe microscope (SPM) are a precursor for nanomanufacturing. It is still a challenging task to accomplish nanomanipulation automatically. In ambient conditions without stringent environmental controls, the task of nanomanipulation requires extensive human intervention to compensate for the spatial uncertainties of the SPM. Among these uncertainties, the thermal drift, which affects spatial resolution, is especially hard to solve because it tends to increase with time, and cannot be compensated simultaneously by feedback from the instrument. In this paper, a novel automatic compensation scheme is introduced to measure and estimate the drift one-step ahead. The scheme can be subsequently utilized to compensate for the thermal drift so that a real-time controller for nanomanipulation can be designed, as if the drift did not exist. Experimental results show that the proposed compensation scheme can predict drift with a small error, and therefore, can be embedded in the controller for manipulation tasks

    Block Phase Correlation-Based Automatic Drift Compensation for Atomic Force Microscopes

    Get PDF
    Automatic nanomanipulation and nanofabrication with an Atomic Force Microscope (AFM) is a precursor for nanomanufacturing. In ambient conditions without stringent environmental controls, nanomanipulation tasks require extensive human intervention to compensate for the many spatial uncertainties of the AFM. Among these uncertainties, thermal drift is especially hard to solve because it tends to increase with time and cannot be compensated simultaneously by feedback. In this paper, an automatic compensation scheme is introduced to measure and estimate drift. This information can be subsequently utilized to compensate for the thermal drift so that a real-time controller for nanomanipulation can be designed as if drift does not exist. Experimental results show that the proposed compensation scheme can predict drift with a small error. Future work is aimed at reducing the error even further through temperature feedback. Keywords - nanomanipulation, Atomic Force microscope, drift, Phase-Correlation Method, Neural Networ

    Epitaxial Electrodeposition of Hole Transport CuSCN Nanorods on Au(111) at the Wafer Scale and Lift-Off to Produce Flexible and Transparent Foils

    Get PDF
    The wide bandgap p-type metal pseudohalide semiconductor copper(I) thiocyanate (CuSCN) can serve as a transparent hole transport layer in various opto-electronic applications such as perovsksite and organic solar cells and light-emitting diodes. The material deposits as one-dimensional CuSCN nanorod arrays, which are advantageous due to their high surface area and good charge transport properties. However, the growth of high-quality epitaxial CuSCN nanorods has remained a challenge. Here, we introduce a low cost and highly scalable room temperature procedure for producing epitaxial CuSCN nanorods on Au(111) by an electrochemical method. Epitaxial CuSCN grows on Au(111) with a high degree of in-plane as well as out-of-plane order with +0.22% coincidence site lattice mismatch. The phase of CuSCN that deposits is a function of the Cu2+/SCN- ratio in the deposition bath. A pure rhombohedral material deposits at higher SCN- concentrations, whereas a mixture of rhombohedral and hexagonal phases deposits at lower SCN- concentrations. A Au/epitaxial CuSCN/Ag diode has a diode quality factor of 1.4, whereas a diode produced with polycrystalline CuSCN has a diode quality factor of 2.1. A highly ordered foil of CuSCN was produced by epitaxial lift-off following a triiodide etch of the thin Au substrate. The 400 nm-thick CuSCN foil had an average 94% transmittance in the visible range and a 3.85 eV direct bandgap

    Method of Preparing a Chiral Substrate Surface By Electrodeposition

    Get PDF
    A solid substrate comprising a surface comprising an achiral array of atoms having thereupon a chiral metal oxide surface. The chiral metal oxide surface is prepared by electrodeposition of a chiral metal oxide array from a solution of a chiral salt of the metal. In one embodiment, chiral CuO is grown on achiral Au(001) by epitaxial electrodeposition. The handedness of the film is determined by the specific enantiomer of tartrate ion in the deposition solution. (R,R)- tartrate produces an S—CuO(l 1 T) film, while (S,S)-tartrate produces an R—CuO(Tl 1) film. These chiral CuO films are enantiospecific for the electrochemical oxidation of(R,R) and (S,S)-tartrate

    Relating Detonation Parameters to the Detonation Synthesis of Silicon Carbide

    Get PDF
    Detonation synthesis of silicon carbide (SiC) nanoparticles from carbon liberated by negatively oxygen balanced explosives was evaluated in a 23 factorial design to determine the effects of three categorical experimental factors: (1) cyclotrimethylene-trinitramine (RDX)/2,4,6-trinitrotoluene (TNT) ratio, (2) silicon (Si) additive concentration, and (3) Si particle size. These factors were evaluated at low and high levels as they relate to the detonation performance of the explosive and the solid Si-containing phases produced. Detonation velocity and Chapman-Jouguet (C-J) detonation pressure, which were measured using rate stick plate dent tests, were evaluated. Solid detonation product mass, silicon carbide product concentration, and residual silicon concentration were evaluated using the x-ray diffraction analysis. The factors of Si concentration and the RDX:TNT ratio were shown to affect detonation performance in terms of detonation velocity and C-J pressure by up to 10% and 22%, respectively. Increased concentration of Si in the reactants improved the average SiC concentration in the detonation products from 1.9 to 2.8 wt. %. Similarly, increasing the ratio of RDX to TNT further oxidized detonation products and reduced the average residual Si remaining after detonation from 8.6 to 2.8 wt. %. A 70:30 mass ratio mixture of RDX to TNT loaded with 10 wt. % \u3c 44 μm silicon powder produced an estimated 1.33 g of nanocrystalline cubic silicon carbide from a 150-g test charge. Using a lower concentration of added silicon with a finer particle size reduced SiC yield in the residue to 0.38 g yet improved the SiC to residual Si ratio to 1.64:1

    Synthesis, densification, and cation inversion in high entropy (Co,Cu,Mg,Ni,Zn)Al2O4 spinel

    Get PDF
    The synthesis, densification behavior, and crystallographic site occupancy were investigated for four different spinel-based ceramics, including a high-entropy spinel (Co0.2Cu0.2Mg0.2Ni0.2 Zn0.2)Al2O4. Each composition was reacted to form a single phase, but analysis of X-ray diffraction patterns revealed differences in cation site occupancy with the high-entropy spinel being nearly fully normal. Densification behavior was investigated and showed that fully dense ceramics could be produced by hot pressing at temperatures as low as 1375°C for all compositions. Vickers’ hardness values were at least 10 GPa for all compositions. The cations present in the high-entropy spinel appear to have a stabilizing effect that led to nearly normal site occupancy compared to full cation inversion behavior of nickel aluminate spinel. This is the first report that compares cation site occupancy of a high-entropy spinel to conventional spinel ceramics

    Carbothermal reaction of mechanically activated ZrC powders followed by DSC-TGA

    Get PDF
    Mixtures of ZrO2 and C were prepared by high-energy ball milling. Powders were milled for times from 0 to 120 minutes in air atmosphere. As milling time increased, surface area of powders increased, indicating significant particle size reduction. The thermal treatment cycle included heating at 10 °C/min to 1600 °C followed by an isothermal hold for 2 hours under the vacuum (~20 Pa) in a resistance-heated graphite element furnace. This first step of the process promoted carbothermal reaction of the starting materials. DSC-TGA was used to follow the carbothermal reaction. The onset temperature does not seem to change for non-activated and activated powders. The change in peak area may be related to the amount of the powder that reacts at this temperature. The catbothermal reaction was split into two parts for powders activated 60 and 120 minutes. Only part of the powder reacts at the initial reaction, and then higher temperatures are required for full reaction

    Electrochemical Deposition and Characterization of Fe₃O₄ Films Produced by the Reduction of Fe(III)-triethanolamine

    Get PDF
    In this paper, we demonstrate that films of magnetite, Fe3O4, can be deposited by the electrochemical reduction of a Fe(III)-triethanolamine complex in aqueous alkaline solution. the films were deposited with a columnar microstructure and a [100] preferred orientation on stainless steel substrates. In-plane electrical transport and magnetoresistance measurements were performed on the films after they were stripped off onto glass substrates. the resistance of the films was dependent on the oxygen partial pressure. We attribute the increase in resistance in O2 and the decrease in resistance in Ar to the oxidation and reduction of grain boundaries. the decrease in resistance in an Ar atmosphere exhibited first-order kinetics, with an activation energy of 0.2 eV. the temperature dependence of the resistance showed a linear dependence of log(R) versus T-1/2, consistent with tunneling across resistive grain boundaries. a room-temperature magnetoresistance of -6.5% was observed at a magnetic field of 9 T

    Textured NiSeâ‚‚ Film: Bifunctional Electrocatalyst for Full Water Splitting at Remarkably Low Overpotential with High Energy Efficiency

    Get PDF
    Herein we have shown that electrodeposited NiSe2 can be used as a bifunctional electrocatalyst under alkaline conditions to split water at very low potential by catalyzing both oxygen evolution and hydrogen evolution reactions at anode and cathode, respectively, achieving a very high electrolysis energy efficiency exceeding 80% at considerably high current densities (100 mA cm-2). The OER catalytic activity as well as electrolysis energy efficiency surpasses any previously reported OER electrocatalyst in alkaline medium and energy efficiency of an electrolyzer using state-of-the-art Pt and RuO2 as the HER and OER catalyst, respectively. Through detailed electrochemical and structural characterization, we have shown that the enhanced catalytic activity is attributed to directional growth of the electrodeposited film that exposes a Ni-rich lattice plane as the terminating plane, as well as increased covalency of the selenide lattice which decreases the Ni(II) to Ni(III) oxidation potential. Thereby, the high efficiency along with extended stability makes NiSe2 as the most efficient water electrolyzer known to-date
    • …
    corecore